Konstruksiemetodes in antieke Taxila

Konstruksiemetodes in antieke Taxila


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.


Antieke skeepsbou tegnieke

Skipboutegnieke kan geklassifiseer word as velle, houthoute, genaaide, vasgemaakte planken, klinkers (en omgekeerde klinkers), skulp-eerste en raam-eerste. Terwyl die raam-eerste tegniek die moderne skeepsboubedryf oorheers, het die ou mense hoofsaaklik op die ander tegnieke staatgemaak om hul watervaartuie te bou. In baie gevalle was hierdie tegnieke baie arbeidsintensief en/of ondoeltreffend in die gebruik van grondstowwe. Ongeag die verskille in die konstruksietegnieke van skepe, was die vaartuie van die antieke wêreld, veral die wat die waters van die Middellandse See en die eilande van Suidoos-Asië bederf het, seewaardige vaartuie wat mense in staat kon stel om op groot skaal handel te dryf. [1]


Konstruksiemetodes in antieke Taxila - geskiedenis

Prehistoriese konstruksietegnieke.

Die vroegste voorbeelde van klipwerk in beide die 'ou' en 'nuwe' wêrelde toon 'n hoë vaardigheidsvlak, iets wat dikwels voorgestel word as gevolg van die bestaande kennis van timmerwerk by die oorgang in die werk van hout na klip. Hierdie idee word ietwat bewys in Egipte, waar die metselwerk van die plafonne in die tempels van die 1ste dinastie Saqqara gesny is om die 'rietbundel'-plafonne van pre-dinastiese Egipte na te boots. Daar is egter geen bewyse van so 'n oorgang in die Amerikas nie.

Voorgestelde messelwerktegnieke:

  • 'Gevoude' kliphoeke.
  • Veelvlakkige klippe.
  • Metaal 'Block-Ties'.
  • Steengroeipunte - (Kloofsteen).
  • Groot klippe beweeg.
  • Uiterste messelwerk.
  • Verglaasde klip (verglaasing).
  • 'Maneuvering protuberances'.
  • Mortise en tenon sluit aan ...
  • Beton in antieke strukture.
  • Boor in die voorgeskiedenis.
  • Die spesifieke seleksie van klip.

Die vervoer en gebruik van onnodig groot klipblokke, die spesifieke selektiwiteit van die kliptipe, asook verskillende voorbeelde van 'uiterste' metselwerk by talle heilige en antieke monumente begin 'n eerbied vir klip self openbaar, 'n idee wat in die mitologie gegrond is, godsdiens en kan vandag nog gesien word in Jerusalem, Mekka, die 'Lignum' van Indië en by die kroning van enige nuwe koning of koningin in die Verenigde Koninkryk (dws Skotse 'Stone-of-scone', Engelse 'kings-stone') ens.

Dit is opvallend dat daar verskeie spesifieke konstruksietegnieke in die messelwerk van (blykbaar nie verwant nie) kulture van regoor die antieke wêreld. Die spesifieke ooreenkoms in ontwerp-, tegniek- en ingenieursvaardighede dui in sommige gevalle op 'n algemene kennisbron, of ten minste - op kontak tussen kulture. In reaksie hierop is aangevoer dat sulke ooreenkomste 'co-evolusionêr' is, wat die natuurlike gevolg is van die werk met klip.

Die volgende voorbeelde demonstreer die gesofistikeerde vaardighede van die prehistoriese messelaars.

Verskeie strukture toon die blokke wat met 'n interne hoek gesny is, om die klip om hoeke te 'vou'. Daar word voorgestel dat dit as 'n 'voorkomende' aardbewing opgeneem is.

Valley-tempel, Ghiza, Egipte. - Daar is verskeie klippe met hierdie ontwerpfunksie in die vallei-tempel. Dit is interessant om daarop te let dat die klippe net 'n entjie om die hoek gesny is, wat dui op die idee dat styl moontlik betrokke sou gewees het (eerder as, of so goed as, funksioneer).

Luxor, Egipte. (Links), Machu Pichu, Peru (regs).

Meervoudige klippe:

Daar word dikwels voorgestel dat hierdie ontwerpkenmerk in konstruksies opgeneem is as 'n 'aardbewing' -voorkoming. Die feit dat die konstruksies na so lank in so 'n goeie toestand bestaan, ondersteun op sigself hierdie idee.

Veelvlakkige stene-Vallei-tempel, Ghiza, Egipte.

Terwyl die Egiptiese voorbeelde (hierbo), op 'n horisontale vlak gevolg het, is die Suid -Amerikaanse voorbeelde (hieronder) veelhoekig, blykbaar volg hulle nie vertikale of horisontale vlakke nie, 'n proses wat 'n aansienlik hoër tegniese vaardigheid sou vereis het.

Die Inca -metselwerk in Suid -Amerika is waarskynlik die beste wat die wêreld nog ooit gesien het.

S. Amerika, Cuzco. 'Steen van die twaalf engele'. (2)

Sacsayhuaman - Een van die grootste mure van alle tye.

Een van die 300 Ahu -platforms rondom Paaseiland. Die styl van messelwerk, gemaak van basalt en met blokke van verskeie ton elk, toon 'n sterk ooreenkoms met die voorbeelde hierbo van Suid -Amerikaanse messelwerk.

'N Ander konstruksie -kenmerk wat algemeen voorgestel word as 'n voorkoming van aardbewings, is die middele wat gebruik word om groot blokke aan mekaar te verbind. Daar word geglo dat koper (of silwer) by Tiahuanaco (hieronder) gebruik is, wat albei sagte metale is.

'N Paar voorbeelde uit die' ou wêreld '(naamlik Egipte en Kambodja).

Van links na regs: Angkor Watt, Karnak en Denderra.

En uit die 'nuwe wêreld': Tiahuanaco, en Ollantaytambo.

Daar is ook voorgestel dat hierdie 'bande' gebruik is om strukture behoorlik te 'grond' (dikwels gemaak van geleidende kwartsiet).

Steengroeipunte (vir die skeuring van klippe):

Die megalitiese bouers gebruik dieselfde metode om kwarts te verdeel op verskillende plekke regoor die wêreld. Dit is nie ongewoon nie, want dit is waarskynlik die beste metode, en word vandag nog steeds wyd gebruik. Die maklikste manier om kwartssteen te verdeel, is om 'n reeks gate in die klip te sny, wat dan met 'wiggies en velle' gepak word (gemaak van hout). Na die toevoeging van water brei die wiggies uit en die klip skeur langs die lyn.

Voorbeelde uit S. Amerika: Links: Machu Pichu (1) en regs: Cuzco.

Van Egipte: Menkaure se piramide, Giza (links) en by Aswan (regs).

Van Carnac, Frankryk, (links) en Castleruddery, Ierland (regs).

Meer voorbeelde uit Portugal (links) en vanaf Malta (regs).

'Maneuvering Protuberances':

Hierdie klein uitsteeksels kom voor op die oudste (en waarskynlik die heiligste) Egipte en Suid -Amerikaanse konstruksies. Daar word algemeen aangeneem dat hulle as 'haakplekke' gefunksioneer het om die blokke op hul plek te maneuver, maar daar is verskeie voorbeelde waarop hulle 'n ander betekenis gelaat is.

Die 'baas' -merk op die klip bokant die ingang na die' koning se kamer 'in die groot piramide word dikwels voorgestel as die oorblyfsels van een van hierdie uitsteeksels.

Hulle word aangetref op die buite-graniet-klippe van die Menkaure-piramide in Giza.

Dit is moontlik om te sien hoe die proses om die graniete omhulselstene af te glad, aan die oostekant van die Menkaures -piramide begin is. Die gladstrykingsproses is bereik met die gebruik van Dolerite mauls wat die sagter graniet kon stamp. Hierdie proses kan vandag nog gesien word by die Aswan -granietgroewe, waar die graniet vir Giza oorspronklik vandaan gekom het.

Dieselfde merke word ook gevind in die Osireion, by Abydoss. Een van die verskeie redes om die teorie dat dit eietyds was met die Vallei -tempel in Ghiza, te ondersteun.

Soortgelyke 'uitsteeksels' kan op verskeie Inca -terreine in Suid -Amerika gesien word.

In Ollantaytambo, Peru, kry die 'uitsteeksels' 'n heel ander betekenis, aangesien dit byna as gestileer as funksioneel beskou kan word.

Alhoewel beide plekke dieselfde 'uitsteeksels' het, was die Inca-blokwerk veelvlakkig, terwyl dit in Ghiza in gelyke bane gelê is.

Mortise en Tenon Joints:

Dit is miskien verbasend om te vind dat sommige van die vroegste bekende voorbeelde van messelwerk 'n gesofistikeerde begrip van skrynwerk toon. Hierdie spesifieke konstruksie -kenmerk word redelik verklaar as gevolg van die oorgang van boustrukture, eers van hout en dan van klip.

'N Paar voorbeelde van die verskillende' Mortise and Tenon 'verbindings wat gebruik is by die bou van The Osirion, in Abydoss, in Egipte. Dit word beskou as een van die oudste geboue in Egipte, en word aangehaal dat dit slegs een ander struktuur van kontemporêre ontwerp het, naamlik die Vallei-tempel in Giza. Beide strukture gebruik die tegniek van deurlopende getinte trilithone, ook gesien in Stonehenge III.

Uittreksels is natuurlik voorheen in skepe van die Bronstydperk in Egipte gebruik, soos by die konstruksie van die Khufu-boot in Giza (ongeveer 2600 v.C.) en Senwosret III se bote (ongeveer 1850 v.C. ) by Dashur (Lipke 1984, 64 Steffy 1994, 25-27, 32-36, Patch en Haldane 1990). Hierdie vroeë Egiptiese voorbeelde van afskortings was egter vrystaande en kon nie aangrensende strake aan mekaar sluit nie. Hul primêre funksie was eerder om die planke tydens die konstruksie in lyn te bring, wat dan met ligature aan mekaar vasgemaak is. Dit lyk asof hierdie tradisie van skeepsbou minstens so laat as die 5de eeu v.C. toe Herodotus byna identiese konstruksiemetodes waargeneem het wat nog steeds in Egipte gebruik word. In sy dikwels aangehaalde aanhaling het Herodotus opgemerk dat kort planke met lang toue aan mekaar verbind is, wat dan van binne in die nate met papirusvesels gebind is (Haldane & Shelmerdine 1990). Daar word geen melding gemaak van die sluiting van die vasgemaakte tande met penne nie. Die Egiptenare was egter sedert die Ou Ryk uiteindelik ten volle bewus van die vasgemaakte vassnitte en -verbindings (dinastie III: ongeveer 2700-2600 v.C.) en het dit gebruik in houtwerk wat hierdie tipe bevestiging vereis (Lucas & Harris 1962, 451 ), maar sover ons kan vasstel, het hulle nie hul gebruik in skeepsbou gebruik nie, tensy hulle hul gebruik slegs beperk het tot seevaartuie, waarvoor ons voorbeelde het. (9)

T hy Stonehenge Sarsen Stones : In sy volledige vorm sou die buitenste klipvorm bestaan ​​uit 'n sirkel van 30 reguit sarsenstene, waarvan 17 nog staan, elk met 'n gewig van ongeveer 25 ton. Die bokante van hierdie staanders is verbind met 'n deurlopende ring van horisontale sarsen -lateie, waarvan slegs 'n klein deel nog in posisie is. Die klippe in die sarsen-sirkel is sorgvuldig gevorm en die horisontale lateie is nie net verbind deur middel van eenvoudige steekverbindings nie, maar hulle is ook gesluit met 'n swaelstertverbinding. Die rande is glad gemaak tot 'n sagte kromme wat die lyn van die hele sirkel volg.

Die foto's hierbo illustreer die gesofistikeerde konstruksietegnieke wat toegepas is op die Stonehenge-sarsenstene, wat omstreeks 2500 vC gedateer is, maar as ons Lockyer se leiding volg en na Egiptiese messelwerk kyk, vind ons dat soortgelyke kenmerke toegepas is op die konstruksie van die Osirion bo sonsopkoms (2) .

En laastens, van die Indus Valley Culture.

Hierdie ongelooflike klipgietwerk is afkomstig van Harappa in Pakistan (ongeveer 2,500-2,100 vC).

Petrie beweer dat vroeë dinastiese Egiptenare oefeninge vir sommige van hul konstruksies gebruik het. Die volgende beelde dui aan dat hy reg was.

Bewyse vir boorwerk in antieke Egipte. Punte in die koninkskas dui daarop dat dit ook deur kernboring gehul is.

Die Capstones of Pierres Plates in Frankryk het bo-merke aan die bokant.

Die 'boormerke' op sommige klippe pas by dié van ander, wat daarop dui dat hulle in twee dele verdeel is.

Chirurgiese boor in die voorgeskiedenis.

Alhoewel dit nie direk met konstruksie verband hou nie, loop die bewys van boorwerk al duisende jare terug, soos getuig deur die talle voorbeelde van prehistoriese tandheelkunde en Trepanning, wat beide boorprosedures behels.

Artikel: MSNBC (2006) - Navorsers het bevind dat vindingrykheid en vermoë van prehistoriese mense om ontsaglike pyn te weerstaan ​​en te veroorsaak, bevind dat tandheelkundige boorwerk 9 000 jaar oud is.

Primitiewe tandartse het bykans perfekte gate in lewende maar ongetwyfeld ongelukkige pasiënte tussen 5500 v.C. en 7000 v.C., 'n artikel in Donderdag se uitgawe van die tydskrif Nature reports. Navorsers het ten minste nege skedels gedateer met 11 boorgate wat op 'n begraafplaas in Pakistan gevind is .

Trepanasie: Skedels met tekens van trepanning is feitlik gevind in alle dele van die wêreld waar die mens gewoon het. Trepanning is waarskynlik die oudste chirurgiese operasie wat die mens ken: bewyse daarvoor strek tot op 40 000 jaar oue Cro-Magnon-terreine. Die Egiptenare het die sirkelvormige trefien uitgevind, gemaak deur 'n buis met getande rande, wat baie makliker deur middel van rotasie sny, en wat dan op groot skaal in Griekeland en Rome gebruik is, en die oorsprong was van die & quotcrown & quot -trefien, wat in Europa van die eerste tot die 19de eeu.

Honderde eenvormig gate op die klippe in Mnajdra, Malta, geboor.

Die gebruik van beton in antieke strukture:

'Die hare in die rots' , Egipte: prof. Dr. Joseph Davidovits van die Franse Geopolymer Institute het 'n haar ontdek wat uit 'n rots van die Cheops (Khufu) piramide van Giza) steek. Hy het tot die gevolgtrekking gekom dat die hare ouer is as die rots wat dit omring (wat beteken dat die rots later gevorm word), of dat die rots sinteties is. Beide is redelik verstommend.

Ondersoek en afmetings van die rotsblokke wat by die bou van die piramide gebruik is, toon 'n buitengewoon hoë voginhoud (blykbaar die soort wat 'n mens in beton sou verwag).

Die foto (regs) is van die sypaadjie rondom die piramides by Giza. Daar is getoon dat hierdie sypaadjie akkuraat gelykgemaak is tot minder as 0,5 duim oor die hele terrein, wat dit 'n skouspelagtige metselwerk in sy eie reg maak. Van meer onmiddellike belang is egter die dun kalksteen wat langs die swart basaltgesteente daar agter gebly het.

Die oorspronklike voorstander van hierdie teorie was prof. Dr. Joseph Davidovits, wie se oorspronklike uitsprake in die 1980's eers bespot is, maar wat nou, na streng analise, redelik gestaaf is. Die volgende wetenskaplike verdrag is in 2006 geskryf en ondersteun Davidovit se oorspronklike teorie. (Alhoewel egiptoloë steeds vasbeslote weier om so 'n idee te aanvaar, kry dit geleidelik steun).

Artikel: Science Daily. 2006: Professor vind dat 'n paar piramide -boublokke beton was .

In die gedeeltelike oplossing van 'n raaisel wat argeoloë al eeue lank verstom het, het 'n professor aan die Universiteit van Drexel vasgestel dat die Groot Piramides van Giza gebou is met 'n kombinasie van nie net gesnyde klippe nie, maar die eerste blokke van kalksteen wat deur enige beskawing gegiet is.

Die jarelange oortuiging is dat die piramides gebou is met kalksteenblokke wat met behulp van koperwerktuie in die nabygeleë steengroewe gevorm is, na die piramide -terreine vervoer is, opritte opgetel en met behulp van wiggies en hefbome opgehys is. Barsoum voer aan dat, hoewel die meerderheid van die klippe inderdaad gesny en gehys is, dit nie die belangrikste dele was nie. Die ou bouers het die blokke van die buitenste en binneste omhulsels en waarskynlik die boonste dele van die piramides gegiet met 'n kalksteenbeton, 'n geopolymeer genoem.

Die tipe betonpiramide -bouers wat gebruik word, kan besoedeling verminder en Portland -sement, wat die algemeenste tipe moderne sement is, oorleef. Portland sement spuit 'n groot hoeveelheid van die wêreld se koolstofdioksied in die atmosfeer en het 'n lewensduur van ongeveer 150 jaar. As dit wyd gebruik word, kan 'n geopolymeer soos die wat gebruik word by die bou van die piramides, die hoeveelheid besoedeling met 90 persent verminder en baie langer duur. Die grondstowwe wat gebruik word vir die vervaardiging van die beton wat in die piramides gebruik word - kalk, kalksteen en diatomeeënaarde - kan wêreldwyd gevind word en is bekostigbaar genoeg om 'n belangrike konstruksiemateriaal vir ontwikkelende lande te wees.

Benewens die idee dat die blokke self moontlik van sement gemaak is, het Petrie self geïdentifiseer dat dit ook tussen die blokke gebruik is. Die hele Groot Piramide was oorspronklik bedek met 'n laag gepoleerde kalksteenblokke. Die oppervlaktes van hierdie blokke het stutoppervlaktes tot 1/100 duim wiskundige perfeksie. Petrie het dit gesê:

. 'Die gemiddelde variasie van die sny van die klip uit 'n reguit lyn en van 'n regte vierkant is maar 0,1 duim in 'n lengte van 75 duim op die gesig, 'n mate van akkuraatheid gelyk aan die modernste optiese reguit rande van so 'n lengte. Hierdie verbindings, met 'n oppervlakte van ongeveer 35 vierkante voet elk, is nie net so fyn soos hierdie gewerk nie, maar is deurgaans vasgemaak. Alhoewel die klippe so naby as 1/500 duim gebring is, of eintlik in aanraking gekom het, en die gemiddelde opening van die voeg was 1/50 duim, het die bouers dit tog reggekry om die voeg met sement te vul, ondanks die groot oppervlakte daarvan en die gewig van die klip wat verskuif moet word- ongeveer 16 ton. Om sulke klippe bloot in presiese kontak aan die kante te plaas, sal sorgvuldige werk wees, maar dit is amper onmoontlik om dit met sement in die verbindings te doen. (8)

Die hoogs gepoleerde kalksteen omhulselklippe wat die piramide bedek het, is met 'n 'fyn aluminiumsilikaat sement' vasgemaak. Die voltooide piramide bevat ongeveer 115 000 van hierdie klippe wat elk tien ton of meer weeg. Hierdie klippe is aangetrek al ses van hul kante, nie net die kant wat aan die sigbare oppervlak blootgestel is nie, aan toleransies van .01 duim. Hulle was so aanmekaar gesit dat 'n dun skeermeslem nie tussen die klippe geplaas kon word nie.

Die egyptoloog Petrie het sy verbasing oor hierdie prestasie uitgespreek deur te skryf: - ' Slegs om sulke klippe in presiese kontak te plaas, sal sorgvuldige werk wees, maar dit is byna onmoontlik om dit met sement in die las te doen, maar dit kan vergelyk word met die beste optici se werk op die oppervlakte van hektaar & quot.

Uittreksel uit Petrie - Die gebruik van gips deur die Egiptenare is merkwaardig en hulle vaardigheid om gewrigte te sementeer is moeilik om te verstaan. Hoe hulle in die omhulsel van die Groot Piramide 'n vertikale verbinding met 'n oppervlakte van ongeveer 5 x 7 voet in sement kan vul, en 'n gemiddelde van slegs 50 cm dik is 'n raaisel, veral omdat die gewrig nie verdun kan word deur te vryf nie dit is 'n vertikale verbinding en die blok weeg ongeveer 16 ton. Tog was dit die gewone werk met 'n oppervlakte van 13 hektaar, met tienduisende omhulselstene, nie minder as 'n ton nie.

Uittreksel uit Petrie - Uit verskeie aanduidings blyk dit dat die messelaars die omhulsel en ten minste 'n paar van die kernmetsels ook, kursus vir kursus, op die grond beplan het. Op die hele omhulsel en op die kern waarop die omhulsel aangebring is, is daar lyne getrek op die horisontale oppervlaktes, wat aandui waar elke klip op die onderkant geplaas moes word. As die klippe net afgewerk word om by mekaar aan te pas terwyl die gebou aangaan, hoef u nie die plek van elke blok so noukeurig te merk nie, en dit wys dat dit waarskynlik op die onderstaande grond beplan en bymekaar was. . Nog 'n aanduiding van baie noukeurige en uitgebreide beplanning op die grond is in die boonste ruimte bo die Koningskamer, die dakbalke is genommer en gemerk vir die noord- of suidekant, en alhoewel daar gedink kan word dat dit geen gevolg het nie in watter volgorde hulle geplaas is, maar al hul besonderhede is blykbaar geskets voordat dit aan die bouers se hande gelewer is. Hierdie sorg om al die werk te reël, stem opvallend ooreen met die groot werk van ongeskoolde arbeiders gedurende twee of drie maande op 'n slag, aangesien hulle dan al die klippe wat die messelaars gewerk en geberg het, gereed het vir gebruik sedert die voorafgaande seisoen.

Maltese beton ( Torba)

Ggantija , Malta - Daar word beweer dat die tempels op Malta van die oudste vrystaande tempels ter wêreld is. A. Service (6) noem die 'kontemporêre sement van die vloer' in die sypaadjie van die Ggantija -tempel op Gozo, Malta (sien links), en hoewel die idee lank nie aanvaar is nie, is Maltese argeoloë nou van die mening dat Torba (soos dit op Malta genoem word), is gevorm deur die verkrummel van verkrummel gesteente en rotsstof en dan water byvoeg (7), wat 'n taai en duursame rotsagtige materiaal skep wat gelyk is aan die beste en sterkste beton wat vandag gebruik word.

Die onderstaande foto's toon hoe sommige van die tempelvloere met groot klippe geplavei is, 'n proses wat ook by verskeie Maltese tempels sigbaar is (Tarxien, links en Ggantija, regs).

Die spesifieke seleksie van klip:

Alhoewel dit duidelik is dat die megalitiese bouers 'n voorkeur vir sekere kliptipes getoon het, moet die rede hiervoor nog nie bevredigend verduidelik word nie. Die ekstra afstand en moeite wat nodig is om spesifieke stene in ou strukture te gebruik, bied ons 'n idee van die moontlike motivering van die bouers.

Die ontsaglike witkwarts, portaalstene by Castelruddery Henge-sirkel in Ierland.


Die toekoms van die oue: hoe ou konstruksietegnieke opgedateer word

Terwyl tegnologie en konstruksie die afgelope jare vinnig gevorder het, waardeur strukture langer en vinniger as ooit gebou kon word, herinner die oorblyfsels van kolossale antieke monumente ons daaraan dat konstruksietegnieke van so lank as honderde jare gelede ook enorme verdienste gehad het. Baie van die innovasies van die oudheid dien eintlik as fondamente van die moderne konstruksie, met die Romeinse uitvinding van beton as 'n goeie voorbeeld. Ander noodsaaklike antieke konstruksietegnieke, soos die boog en die koepel, word nou dikwels as stilistiese floreer beskou, met ontwerpe soos die Met Operahuis wat klassieke tipologieë in 'n moderne konteks herinterpreteer. Maar miskien is die mees relevante herinterpretasies van antieke konstruksie vandag diegene wat dit doen in die belang van volhoubaarheid, en afstand doen van moderne konstruksiemetodes met hoë energie ten gunste van ouer, meer natuurlike tegnieke.

Hierdie herinterpretasies het baie verskillende vorme aangeneem, van die herleefde gebruik van antieke materiaal tot die hernuwing van antieke konstruksietegnieke. 'N Nuwe soort konstruksie van gestampte aarde verbeeld byvoorbeeld ou materiële volhoubaarheid vanuit 'n materiële oogpunt, wat tradisionele gestampte aarde omskep in die sterker sementstabiliseerde gestapelde aarde (CSRE). Oorspronklik bestaan ​​dit uit grond, water en 'n natuurlike stabiliseerder (dierlike urine, dierlike bloed, plantvesels of bitumen) en bestaan ​​al eeue lank deur gestampte grondkonstruksie, wat gebruik is in monumentale antieke projekte wat wissel van die Groot Muur van China tot Alhambra. CSRE meng egter eerder grond, water en sement, en verbeter die materiaal se sterkte volgens grootte. Die belangrikste bestanddeel is steeds die plaaslike grond, maar CSRE verminder dus die negatiewe gevolge van die vervoer van ander materiale van kritieke belang. CSRE is ook goedkoper as baie ander meer algemene boumateriaal, wat dit ook 'n volhoubare opsie maak vir bekostigbare behuising. Die Xi'an Universiteit vir Argitektuur en Tegnologie het die gebruik van CSRE ondersoek om landelike gemeenskappe te help om nuwe huise te bou, terwyl die Wes -Australiese departement van behuising ondersoek ingestel het na die gebruik van CSRE in afgeleë inheemse gemeenskappe.

In 'n soortgelyke trant kom die ou Egiptiese Nubiese kluis weer tot 'n herlewing in die Saheliese Afrika, te midde van 'n plaaslike behuisingskrisis, deur die Nubian Vault Association (AVN). Bevolkingsgroei en vinnige ontbossing het dit vir mense moeilik gemaak om tradisionele bos- en strooidakke te bou, terwyl die onlangse alternatief vir die invoer van sinkplate duur en onvolhoubaar was. Nubiese kluise, wat gebruik is om huise in die ou Egipte te bou en behels die bou van gewelfde dakke met gedroogde modderblokke, gebruik beide plaaslike materiaal en elimineer die behoefte aan hout. AVN stel die Nubiese kluis as 'n volhoubare oplossing in deur plaaslike inwoners op te lei in die konstruksietegnieke, 'n poging wat in 2016 erken is deur die World Habitat Awards.

Nubiese kluistegniek soos gebruik in die ruïnes van Ayn Asil. Beeld met vergunning van Wikipedia -gebruiker Graphophile

CobBauge is nog 'n volhoubare konstruksiemateriaal wat die afgelope jaar deur die Universiteit van Plymouth ondersoek is. Cob word al honderde jare gebruik om huise in Engeland en Frankryk te bou, maar voldoen aan die moderne konstruksieregulasies weens die swakker termiese en strukturele eienskappe. Die Universiteit van Plymouth het nuwe kolfmengsels ondersoek wat aan bouregulasies sal voldoen en waarmee hedendaagse argitekte die materiaal weer kan gebruik. Hierdie nuwe mengsels bestaan ​​uit plaaslike gronde en hoop dat dit CO2 -uitstoot kan verminder en ook konstruksie -afval kan verminder.

Ou konstruksiemateriaal en -tegnieke word egter nie net gewaardeer vir hul volhoubaarheid nie - boumetodes soos die ou Chinese dougong kan duisende jare oud wees, maar word vandag nog herontdek vir verskillende strukturele en estetiese behoeftes. Eietydse argitekte soos Kengo Kuma, wat bestaan ​​uit 'n houtbeugelstelsel wat eens oorhangende pagode dakrakke ondersteun het, het tradisie sowel as estetiese moontlikhede in die ou dougongstelsel gelees, en Kuma het die onkonvensionele Café Kureon ontwerp met behulp van hierdie tegniek. Op dieselfde manier het He Jingtang dougong gebruik om die enorme en uitwaarts groeiende China Art Museum te ontwerp, wat afhanklik is van die tegniese struktuur om die buitengewone dak van die gebou te vervaardig. Ten spyte daarvan dat dit 'n antieke konstruksiemetode is, bly hedendaagse argitekte dus steeds nuwe maniere uitvind om dougong te gebruik.

Aangesien die gebied van argitektuur noodwendig 'n soort heruitvinding ondervind in die lig van die voortslepende klimaatkrisis, het sommige innoveerders teruggekyk na die verlede in hul soeke na suksesvolle en volhoubare alternatiewe vir gewone hedendaagse konstruksiemetodes. Alhoewel baie van hierdie tegnieke staatmaak op die kleinskaalse gebruik van plaaslike materiaal, is dit moontlik dat antieke konstruksiemetodes ook op grootskaalse strukture van toepassing kan wees. As heruitvindings van ou tegnieke, beteken hierdie veranderinge nie noodwendig 'n terugwaartse stap nie, maar kan dit eerder dui op 'n meer bewuste toekoms.


Wat is die wetenskap agter die 'gewiglose' illusie?

Daar is verskillende ontwerpdinamika wat hier speel, wat gesê moet word, gee die MIT -span oneindige voordele bo hul ou eweknieë. Vir die eerste plek het die wetenskaplikes totale beheer oor elke mikrokosmiese en makrokosmiese aspek van hul media - die blokke. Die betonmassas word deur die wetenskaplikes as "massiewe messel -eenhede" (MMU's) genoem en is gemaak met "verskillende digthede om presiese beheer moontlik te maak oor waar die voorwerp se swaartepunt eindig, wat stabiliteit en balans toevoeg," volgens die Gizmodo -artikel .

MIT-wetenskaplikes beweeg blokke van 25 ton met die hand. Krediet: Brandon Clifford en Johanna Lobdell in samewerking met Davide Zampini— CEMEX Global R & ampD

Alhoewel dit lyk asof elke MMU lukraak gegenereer is, vertel die Matter Design -webwerf dat elkeen noukeurig ontwerp is met 'strategies geplaasde afskuining, afgeronde rande, draaipunte, handvatsels en ineenklemingsfunksies'.

Aan die ander kant het ou Peruaans hul massiewe klippe oor groot afstande in onvoorspelbare buitelugomstandighede vervoer.


Sommige van die ineengeslote kenmerke wat deur die MiT -wetenskaplikes gebruik is, en wat ook deur ou bouers gebruik is. Krediet: Brandon Clifford en Johanna Lobdell in samewerking met Davide Zampini— CEMEX Global R & ampD


Hoe kastele werk

Kasteelbou was 'n duur onderneming Koning Edward I het die koninklike skatkamers amper bankrot gemaak deur ongeveer 100,000 pond op sy kastele in Wallis te bestee. Onder die leiding van 'n meesterbouer het ongeveer 3.000 werkers (soos timmermanne, messelaars, grawe, steengroefmakers en smede) werk (meester James van St. George het die Walliese kastele van koning Edward I gebou). Kastele het gewoonlik twee tot tien jaar geneem om te bou.

Kom ons kyk na 'n moderne kasteelbouprojek om middeleeuse kasteelboutegnieke te leer en te verstaan. As 'n eksperiment in argeologie het Michel Guyot en Maryline Martin 'n span van 50 werkers (argitekte, argeoloë en geskoolde werkers) bymekaargemaak om 'n middeleeuse kasteel van nuuts af te bou deur tegnieke en materiaal uit die Middeleeue te gebruik. Die projek, in Treigny in die Bourgondiese streek van Frankryk, word genoem Projek Gueledon. Die ontwerp is gebaseer op die kasteelargitektuur uit die 13de eeu-dit bestaan ​​uit 'n droë grag, gordynmure, hoektorings en 'n groot toring. Die bouwerk het in 1997 begin en sal na verwagting ongeveer 25 jaar duur. Na die aanvanklike belegging is die koste van die projek deur toerisme gedek. In 2006 het die webwerf meer as 245,000 besoekers ontvang, en die projek het ongeveer $ 2,6 miljoen ingebring.

Die boumateriaal is klip, kleigrond en eikebome wat naby die terrein gevind word. Die werkers gebruik tradisionele tegnieke uit die 13de eeu. Om klippe vir die mure te skeur, moet steengroefmakers die rotswand kwoteer om die lyne te sien waar dit sal breek. Hulle ry dan 'n lyn gate in die klip en stamp dan hoeke in die gate, wat skokgolwe deur die klip laat gaan en dit breek.

Werkers gebruik perdewaens om die klippe van die steengroef na die bouperseel te haal. Klipmesselaars beitel die rou klip dan in blokke. Werkers gebruik krane wat deur mense aangedryf word om die afgewerkte klippe op te lig na die steierwerk aan die kasteelmuur.

Ander werkers maak mortier op die terrein van kalk, grond en water. Die messelaars op die muur pas die klippe bymekaar en gebruik die mortier om die blokke bymekaar te hou.

Werkers gebruik tradisionele gereedskap om kasteelstukke te meet en uit te lê. Vakmanne gebruik byvoorbeeld 'n lang tou met knope wat elke meter geplaas word om houtbalke en uitlegstukke te meet. Hulle gebruik ook hout regte hoeke en kalipers vir metings. Hulle gebruik 'n hout driehoek met 'n lyn en loodgieter wat uit een hoek opgehang word as 'n vlak wanneer hulle klippe plaas.

Namate die kasteelmuur hoër word, moet nuwe stellasies in die muur geplaas word en die ou verwyder word, wat vierkantige gate in die mure laat. Vanaf 2007 is Castle Guedelon ongeveer 'n derde voltooi.

Sodra 'n kasteel voltooi is, was dit gereed vir verdediging. Kom ons kyk na die middeleeuse belegstegnieke en die strategieë wat beide kante gebruik.


Antieke konstruksietegnieke van Indië: 'n streeksstudie

Ons geskiedenis het 'n groot impak op die vorming van ons toekoms. Die antieke tegnologie wat deur ons eie voorouers aangeneem is, is uiters ikonies. Gedurende die vroeë tye was daar 'n ekologiese balans onder die menslike en natuurlike omgewing. Hulle het geglo dat die natuur met die gebou saamgesmelt word om 'n skilderagtige scenario te skep, sodat dit nie die natuurskoon van die omgewing benadeel nie. Indië spog tans met ongeveer 3650 ongeveer bekende antieke erfenisstrukture en plekke van nasionale belang. Hier word 'n streeksstudie van die ou konstruksietegnieke van Bengale en die onontdekte historiese skoonheid daarvan uitgelig.

Indië word wêreldwyd erken vir sy variëteitskultuur en sy bydrae daartoe. As elke erfenisstruktuur in ag geneem word, is die konstruksietegniek en strukturele stabiliteit 'n algemene faktor wat kenmerkend is, wat dit tot op hede verseker, ondanks die getuienis van rampe, mensgemaakte rampe en nalatigheid. Dit bevorder en lewer terug op die ryk kulturele erfenis van ons land. Elke struktuur, verdeel in sy verskillende argitektoniese tipes en style, het sy eie individualiteit en spesialiteit. Ons weet nie of dit die bydrae is van die Engelse of ons eie Ariese voorouers op die gebied van argitektuur nie, maar hierdie plekke bied talle unieke tegnieke wat nog steeds ontdek word. While some structures are under the protection of World Heritage Commission, Archaeological Survey of India or State Heritage Commission, there is also a shocking existence of more than 1 lakh structures, precincts and sites which are still unidentified and unprotected. Highlighting a particular region and its architectural style which was known for its simplicity and grandeur using locally available material.

One of the greatest discovery of humankind, which was previously unidentified in the land of West Bengal, India is Moyna Garh in Purba Medinipur district. The entire fort is encircled with two concentric wide moats with huge mounds stretching up to 13 acres. The only way to reach the fort is by boat. The first moat is at a distance of 200 metres from the second. Engrossed in lush concentric greenery, the fort creates a picturesque environment. With time and development, there is an existence of a single moat now. Presently, Moyna Garh belongs to West Bengal Heritage Commission.

Satellite Image Of Moyena Garh Palace In 2014 And 2015, West Bengal

Another finest example that can be mentioned is the Mahisadal Rajbari which is also in Purba Medinipur district built by the Garg family in the 18th Century. The unique fort stands alone as one of the greatest examples of the building construction techniques amalgamating both European and Bengal architectural styles and methods of construction. The gigantic Nava-Ratna temple of 35 feet height, within the vicinity, is a marvellous construction technique.

Dilapidated Tamluk Palace, West Bengal

ARCHITECTURAL INFERENCES

Setting an example amongst the other well-recognized structures, the historical precincts has also fulfilled the need of utilizing innovative techniques during the early times. For example, a natural security scape is seen to be developed encircling the huge moat of Moyena Garh for the protection of the structures. It is believed that they developed bamboo plantation profusely all around the moat and infested crocodiles in the water in order to protect the island from the enemy attacks. The dense forest also included other wild animals and ready canons in every corner. This widely highlights the strong sense of security developed naturally within the area. There was a strong ecological field developed around the boundary. The location was self-sufficient and ensured sustainable resources.

Architectural Features:

All the forts during the earlier centuries had an essence of European architectural style. The huge load-bearing structures were supported with a series of arches which helped in distributing the load evenly thereby maintaining rhythm and harmony. The buildings had a courtyard planning technique involved which intensifies natural ventilation. The construction technique was simple yet outstanding. The ultimate calculation of load-bearing wall made of brick construction was one of the most innovative methods adopted by the people. The brick arches acted as a load-bearing medium on which the load of the upper storey was given. It also acted as brick lintel on which the load acted upon.

The Series Of Arches And The Courtyard Inside Tamluk Palace, West Bengal

Details Of Brick Arches Acting As A Lintel For Bearing The Load

The common material used for the building construction were burnt clay bricks and lime mortar. The bricks were of a smaller size with a height of 2 inches, made in the temporary kiln constructed within the site. The pillars were also made with brick giving it its own shape, usually circular. The roof on the interior of the temple was domical yet seems flat from outside. This method was adopted in order to make the structure heat resistant. The intelligent utilization of round arches and multi-foiled arches are seen which helps in transmitting the heavy load without damaging the structure beneath it thereby enhancing cost reduction.

Dakshineshwar Kali temple in Kolkata, was founded by Rani Rasmoni in 1855. The structure reflects typical Bengal architectural form with &lsquoNava-Ratna&rsquo style or nine spires evenly distributed on each corner and the centre of the upper-storey. The construction of this spires was done with materials like brick and lime mortar. The interior of the temple has a vaulted roof. The three-storeyed temple stands on a high platform with a flight of stairs. The beautiful multi-foiled arched entrance enhances the aesthetic look of the structure whereas functionally ensuring stability to carry the heavy loaded spires from the top. Arches are considered to carry heavy loads and also reduce the cost of construction.

Dakshineshwar Kali Temple At Kolkata, West Bengal And Multifoiled Arch Highlighted

There was a unique distribution of load from the top to the bottom of the structure. In the above figure, it is seen that the mass of the structure kept descending from the bottom to the top where in order to reduce the overall load of the structure. This unique technique of reduction of load can be implemented so that there is no maximum pressure on the ground floor.

The flat roofs of any religious temple always had domical roofing in the interior. It was believed that this method of construction reduces heat inside the building. The gap between the flat rood and the dome generally had a mud and rice husk filling to prevent it from heat transfer inside it.

A Conceptual Of Distribution Of Load From Top To The Plinth Of The Structure

The columns were also made up of brick. This helped in less usage of cement concrete and also helped in building the strength of the structure.

Terra-cotta Tile Art at the temple in Purba Medinipur, West Bengal

Architectural Detailing:

Ultimate and fine detailing on the outer façade was made of Terra-cotta tiles curved in various motifs and figures. It was the most inexpensive and common method of decoration used during earlier times. Curved into various shapes or human forms, these tiles highlighted its various mythological characters or scenes. In residential buildings, pilasters with beautiful flower motifs served as a unique method of ornamentation. The creation of grandness and detailed decorations made the outer façade look more attractive. How enriched and extravagant outlook can be created by using low-cost decoration techniques is to be learnt from history. Neither of the structures involved heavy construction techniques yet stood outstanding.

The inferences drawn from these examples and structures reflect the various marvellous methods of building construction techniques adopted by the people of the early 18th Century. Innumerable other methods like the usage of Domes and other Gothic architectural forms were also seen. The low-cost vernacular houses maintained a very minimum usage of resources. Mud and rice-husk mainly acted as a common ingredient. These houses were made up of either raw clay mixed with rice husk or clay blocks later plastered with mud or lime mortar. These houses generally reached up to three-storeys high with a sloping roof supported by a wooden truss.

As well said by Mark Twain, &ldquoHistory doesn&rsquot repeat itself, but it does rhyme.&rdquo We can easily link our past ideologies into the present context by adopting their technologies. Every location serves as an eminent part. These few examples of historical buildings have given us the slightest ideas about how we can uplift the past and implement them in modern technologies. The essence that has been lost can be incorporated in the future. There is no point harming the agenda they have set for us. There must be a unique feature of the construction techniques our ancestors had adopted. Every structure has witnessed calamities and human negligence and still stands still. Barely 35% of the total unidentified structures seems abandoned or ruined totally. Otherwise, when restored and taken care of, they boast itself and stands iconic.

Terminology:

Ath-Chala: Typical Bengal architectural style. Single square or rectangular chamber having four sloping roofs and a duplicate miniature version of same structure roofs (curvilinear or straight) on top of it.

Chandni: Flat-roofed temple, square or rectangular smaller in size with not more than three entrances.

Nava-Ratna: Typical Bengal architectural style. Additional nine spires evenly distributed in the centre and four corners of the roof in a religious structure.


1.3.2 Aggregates

Aggregates give body to the concrete. They also reduce shrinkage and effect overall economy. Since aggregate is cheaper than cement, it is economical to put as much aggregates as possible. Not only the use of more volume of aggregate in concrete is economical, it also provides higher volume stability to the concrete. Generally they occupy 60-70% of the total volume of concrete. At the same time the aggregates should be strong because the weak aggregates cannot make strong concrete and they may limit the strength of concrete. Therefore the selection of aggregate becomes very vital.

Earlier aggregates were viewed as an inert ingredient of concrete but now their importance has been understood and these are no more considered inert. Their physical, chemical as well as thermal properties greatly influence the properties of concrete. (Fig 1.7)

The definition of different types of aggregate are given below,

The aggregate mostly retained on the NO.4 (4.75-mm) sieve or that content of an aggregate retained on the No.4 (4.75-mm) sieve.

The aggregate mostly passing the 3/8-in (9.5-mm) sieve and mostly passing the NO.4 (4.75-mm) sieve and mostly retained on the NO.200 (75-μm) sieve or the part of an aggregate passing NO.4 (4.75-mm) sieve and mostly retained on the NO.200 (75-μm) sieve.

Granular material mostly retained on the NO.4 (4.75-mm) sieve and resulting from natural environment erosion and abrasion of stone or it will processing the weakness bound of conglomerate, or that part of an aggregate mostly retained on the NO.4 (4.75-mm) sieve and resulting from natural environment erosion and abrasion of stone or it will processing the weakness bound of conglomerate.

Granular material passing the 3/8-in (9.5-mm) sieve and mostly entirely passing the NO.4 (4.75-mm) and mostly retained on the NO.200(75-μm) sieve, and resulting from natural environmental erosion and abrasion of stone or it will processing the completely friable sandstone or that part of an aggregate passing the NO.4 (4.75-mm) and mostly retained on the NO.200(75-μm) sieve, and resulting from natural environmental erosion and abrasion of stone or it will processing the completely friable sandstone.

The product of resulting from the manmade crushing of stone, large cobblestones or boulders all has the definition of crush stone and they have resulted from crush processing.

Air-Cooled Blast Furnace Slag

The nonmetallic product, consisting essentially or silicates and aluminosilicates of calcium and other bases, it is developed in molten condition simultaneously with iron in a blast furnace.

The product resulted from the manmade crushing of gravel which specified minimum percentage of fragments it has one or more side resulting from fracture.

(Neville, A.M, and Brooks, 1987)


History of Roman Water

Figure 2. The iconic Tiber river, a key component of Rome’s advantageous founding location.

According to legend, Rome was founded by the brothers Romulus and Remus in 753 B.C.E. [6]. Rome’s location provided two key advantages: its seven hills made city defense more manageable and the Tiber river supplied a steady source of water. The first water-related project in Rome was likely the Cloaca Maxima, or the Great Sewer. The Cloaca Maxima was a drainage canal that began construction in 600 B.C.E. at the order of the fifth king of Rome, Tarquinius Priscus. Priscus’ intention was to drain the flood-prone area between three of Rome’s hills (Palatine, Esquiline, and Capitoline) which would later become the Roman Forum [7]. This area was originally 20 feet below sea level and flooded annually by the Tiber, but under Priscus’s guidance the basin was filled with soil and debris until the ground level rose by 30 feet. The surface was then paved in order to allow for the construction of the main canal, which would convey flood waters into the Tiber in order to prevent erosion in the Forum. As the city expanded over time, additional canal segments were frequently added and modified to fit the needs of the growing populace. Eventually these canals were covered to allow for structures to be built above them, creating the sewer network that is still in place today. The main outfall of the Cloaca Maxima into the Tiber river is still standing in modern-day Rome a testament to the ingenuity of the first Roman civil engineers.

Figure 3. A modern photo of the Cloaca Maxima. It now serves as a covered shelter for the homeless community. Photo from Jeff Bondono [13].

While Rome’s initial water sources consisted of local wells and cisterns near the city, the needs of the growing population soon required a larger, more consistent supply. This is where the famous aqueducts came into play. The first order of business was to locate a reliable water source within a reasonable distance of the city. This was a sort of pseudo-science the ancient Romans did not have advanced methods for checking water quality so they had to use more qualitative measures. Marcus Vitruvius, a civil engineer and architect, wrote about some of the techniques they used. He described the process of looking for plants in the vicinity of potential water sources, speaking with local inhabitants and observing their health, and visually judging the nearby rocks and soils [1]. Even with these precautions, the water quality from the aqueducts was not always perfect. Water sources with clay soils were often poor due to the inability to filter out the clay particles and storms in the countryside could cause the incoming water to be turbid [4].

Figure 4. A map of Rome’s aqueducts, showing their origins (where their water source was located) and paths into the city. Map from brewminate.com [4].

The actual process of constructing the aqueducts consisted of building intakes to catch groundwater from the source, digging tunnels and creating bridges to transport the water through the majority of its path, and distributing the water once it reached Rome. There were several different methods of obtaining groundwater including well intakes, infiltration galleries, and river intakes [3]. Well intakes consisted of rectangular chambers which had water supplied from numerous splits and openings and discharged into one outlet (which would become the aqueduct). Infiltration galleries were 20 – 100 meter long sections which ran alongside a hill and intercepted water flow. The water would trickle into the gallery through small splits in the wall and collect in a settling basin, which helped remove debris and sediments. River intakes consisted of diverting a clean river into two separate channels using dams, with one of these channels feeding into an aqueduct. River intakes were rarely used as aqueduct sources in ancient Rome due to the difficulty of finding suitably clean rivers.

Figure 5. The typical components of an aqueduct. Illustration from brewminate.com [4].

After the water was taken from the source through the various methods explained above and given time to sit in a settlement tank, the aqueduct would begin. The aqueducts contained different segments depending on the specific needs of the path chosen for the aqueduct. These segments included covered trenches, tunnels, bridges, and arcades [4]. Contrary to popular belief, most of the aqueduct lengths were underground. The arcade portions of the aqueducts, with their iconic arches and elevated flow paths, only consisted of around 12% of aqueduct lengths [2]. Based on the path of a specific aqueduct (from its water source to Rome), different combinations of underground and aboveground water transportation methods were necessary. In general, the aqueducts were powered by gravity and had serpentine paths similar to rivers they would twist around mountains and hills and find paths that made for the easiest construction. If it was not possible to navigate around an obstacle, then tunnels would be used to dig through the barrier. To ensure that the aqueducts followed their designed paths, the Romans used basic surveying techniques and tools. The most common surveying tool was the groma, an instrument that comprised of a vertical shaft with a horizontal cross-piece on top. The cross-piece had plumb lines hanging vertically at four ends, each making a right angle with the adjacent side. Die groma would first need be stabilized on the ground and aimed in the needed direction. A helper would then step back a certain distance and, guided by the surveyor using the groma, place a pole to serve as a guide for the desired alignment.

Figure 6. A graphic showing a groma and how it would be used in the field. Image from muelaner.com [14].

The slope of the aqueducts ranged from 0.07% to 3.00%, with an average slope of 0.20% [4]. There is a relatively wide range in slope because different segments of the aqueduct required different water speeds. The slope was critical because if the aqueducts were too steep, the fast water flow would cause damage to the building materials and degrade them over time. If the slope was not steep enough, the slow water flow would lack the speed to make it past the siphons . The following sections will further delve into the construction methods behind the various subsurface and above surface segments of the aqueducts.

Figure 7. The view from inside an aqueduct tunnel.

Construction: Tunnels, Trenches, and Pipes

The aqueduct tunnels were built following an ancient Persian technique called qanat [2]. This consisted of digging shafts (putei) at consistent horizontal intervals, normally around 230 feet. These shafts would be dug down until they reached a desired depth, then workers would begin excavating laterally until they connected with an adjacent shaft. Using this method, the Romans were able to connect all the shafts they needed in order to create a continuous path for the aqueducts. Cranes using pulley systems were then able to carry out excavated material and lower building materials into the tunnels. The shafts also served as maintenance holes in the future, allowing the Romans to inspect and repair the aqueducts if there were ever any issues.

Figure 8. A visual of the quanat method of digging and connecting vertical shafts to construct a continuous underground tunnel. Figure 9. This is a photo looking up into a maintenance hole, while standing in the aqueduct tunnel. Some indents in the rocks are visible these were created so that the workers could climb in and out of the shafts.

Once the tunnels had been excavated, the Romans then needed to install the proper structures necessary to keep the water flowing and sanitary. This consisted of a foundation and footing beneath the floor of the tunnel, a wall along the sides, and an arched vault along the top [4]. After these elements had been constructed, the Romans would then add a waterproofing mortar along the floor and sides of the tunnel. This prevented the water from permeating through the walls of the tunnel, which would degrade the material overtime and reduce the quality of the water. Even with these preemptive measures, minerals in the water would attach to the sides and floors of the aqueduct channels. This accumulation was referred to as sinter and most commonly consisted of calcium carbonate. The Romans were aware of this and conducted regular maintenance to clear the sinter from the channels and ensure the water quality was kept as high as possible. Workers would divert the flow of the aqueduct into an adjacent channel, effectively creating a bypass, and lower themselves into the tunnels using the same shafts that were used to create the conveyance path. Once in the empty channels, they could properly chip away at the sinter and restore the aqueduct to its previous quality.

Figure 10. This photo shows the layer of waterproofing mortar that the Romans used inside the tunnels. The layer degraded over time until a cross section was exposed.

This maintenance technique was effective for the large channels, but different techniques were needed for pipes since the workers could not fit inside. In these cases, workers would create a makeshift pipe cleaner by balling up rags and attaching them to the end of a chord which would then be pulled through the pipe [4]. If the sinter had accumulated too much and caused irreversible damage, then the pipes would have to be replaced. Consistent maintenance was important because if the sinter was allowed to accumulate, the cross sectional area of the channels would decrease over time. This would then cause the speed of the flow to decrease due to increased friction with the sinter’s surface.

Construction: Bridges and Siphons

Bridges were necessary when the aqueduct needed to pass over a valley, river, or other similar obstacle that required an overpass. Siphons were used when the obstacle was too deep or wide to be covered by a bridge.

Two key elements of the Roman bridges were their uses of pozzolana cement and the arch [8]. Pozzolana was a type of slag that formed naturally from volcanic rock. It was a natural cement that the Romans used to make their concrete, allowing them to create strong mortar for the supports of their bridges. The mortar acted as a glue between the building pieces of the bridge it ensured a tight seal and equal distribution of pressure between connected pieces. Two advantages of pozzolana cement were that it grew stronger over time and it was ecologically cleaner than the cement mixtures used today [8]. The arch allowed Romans to take advantage of the superior compressive strength of their stone building materials. By stacking trapezoidal stones called voussoirs in the shape of an arch (held together by the crucial keystone in the center), the weight of the bridge was used to compress the tapered stones together. The resulting pressure created a “locked” mechanism in the arch that required a large amount of force to rupture, essentially creating a very secure supporting structure. By using multiple arches in alignment, Roman bridges were incredibly stable and many are still standing today (like the Alcántara Bridge from 104 C.E.) [8].

Sometimes, such as when constructing bridges over bodies of water, it was not possible to construct the piers of the bridges on land. In these situations, the Romans used cofferdams. Cofferdams provided a temporary dry area in the middle of a body of water. The Romans constructed these by digging a ring of timber logs into the riverbed. Then, the gaps between the logs would be filled with clay in order to create a watertight seal. Once all the gaps were filled the water inside the ring was then pumped out. Now that the riverbed was dry, the Romans could construct the bridge piers using pozzolana and stone as before. After all work was done the logs were removed and the piers stood firmly in the water.

Figure 12. A ring of timber logs that would be dug into a riverbed to create a cofferdam. Image from brewminate.com [16].

When aqueducts needed to pass by a valley that was too deep or wide for a bridge, siphons were used instead. These siphons contained three main elements: an initial distribution tank, a row of lead pipes moving from the tank through the valley, and a receiving tank on the other side of the valley [9]. The distribution tank served as a transition between the open channel of the aqueduct into multiple lead pipes. These pipes had small diameters and were normally laid parallel to each other in a row. It was essentially to keep the pipes fully watertight to prevent leaks and air-bubbles within the system, which would cause the siphon to fail. Furthermore, the pipes had to be strong enough to withstand the high static and dynamic pressures due to the steep descent of the siphons. The receiving tank also needed to be lower in elevation than the distribution tank in order to provide enough head loss to maintain a functional hydraulic grade line.

Figure 13. A simplistic visualization of a siphon.

Construction: Arcades

When people think of the Roman aqueducts, they oftentimes envision the arcades. These were series of arches supported by columns that carried the flow channels when the water needed to be elevated above ground [4]. Each arch’s lateral thrust was supported by its neighbor, so these were essentially long spans of arches that were using each other’s weight as support to stay standing. They were used to convey the water in the plains around Rome where the natural dips and rises would have caused the waterline to be unsteady. Instead, with the arcades, the Romans were able to maintain the steady slope they needed to consistently deliver water to the city.

Figure 14. The remaining arcades of the Aqua Felice.

The materials used to build the arcades included stone blocks, concrete, mortar, tiles, and bricks [2]. Wooden scaffolding was used during construction to allow the workers to put the arcades together piece by piece. The scaffolding held the weight of the arcades until the final piece of each arch, the keystone, could be placed. Depending on how high the arcade needed to be, the Romans would stack multiple layers of arches on top of each other (although they rarely exceeded three layers). Massive pillars, measuring around 10 feet by 10 feet, were used at both ends of the arches in order to support their full weight. These pillars would often increase in size towards the base, giving the structure more resistance against tipping over due to the arch loads.. Finally, the water channel (specus) would be placed on top of the arcades. These were made similarly to the subsurface tunnels, with waterproofing mortar and vaulted roofs [2]. Sometimes, if multiple aqueducts were traveling near each other along the same path, the Romans would stack channels on top of each other in order to prevent the need to construct an entirely new arcade.

Figure 15. A drawing showing the scaffolding and construction framework that was necessary to build the arcades. Image from romanaqueducts.info [17].

Now that the unique components of the aqueducts and how they were generally constructed have been discussed, this report will highlight one specific aqueduct: the Aqua Appia. The Aqua Appia was chosen to be highlighted because of its historical significance as the first aqueduct constructed by the Romans.

Aqueduct spotlight: Aqua Appia

Figure 16. A visualization of the Aqua Appia in ancient Rome (located adjacent to the Aqua Marcia). Image from maquettes-historiques.net [18].

As mentioned, the Aqua Appia was the first aqueduct built in ancient Rome. The need for the aqueduct rose from the fact that the wells and springs around the Tiber river were no longer adequate enough to meet the growing needs of the city [10]. The aqueduct began construction in 312 B.C.E. under the guidance of Appius Claudius Caucus, who was one of the two censors at the time. A censor was a civil officer who was responsible for supervising public morality and overseeing government works. Appius Claudius was already working on the Appian Way (one of the first ancient Roman roads), so he decided to take on the aqueduct project as well.

The source for the Aqua Appia was approximately 24 meters below ground level, at a series of springs discovered by the Roman statesman Gaius Plautius Venox [10]. The total length of the aqueduct, from its source to Rome, was around 10 miles. It took several years to fully complete the aqueduct and it was almost entirely underground, with only 0.1 miles of arcades residing above the surface. To finance the project, money was furnished both by public and private sources through the treasuries, town councils, and citizens. The cost of the Aqua Appia is estimated to have been around 400,000 sesterces, which is equivalent to approximately $1,200,000 in today’s currency.

Although the Aqua Appia was an incredible feat of engineering, it was not without its faults. The aqueduct developed leaks over time and required consistent maintenance. It was also frequently targeted by Rome’s enemies as a means to cut off water supply to the city. Regardless, the Appia was monumental as the first aqueduct and paved the way for more advancement in Roman water engineering.


Indianapolis Asphalt Paving

Asphalt Concrete Paving 317-549-1833

Call ACI Asphalt and Concrete at 317-549-1833 for professional Indianapolis asphalt paving you can trust. Our team of pavers are licensed, bonded, and insured paving contractors. We offer a wide range of commercial, industrial, and municipal pavement repair and installation services at competitive prices. Request a free estimate, today!


Kyk die video: STONE MORTARS AND PESTLES MAKING IN PAKISTAN. STONE CARVING ART TAXILA PAKISTAN


Kommentaar:

  1. Jaryn

    The word of honor.

  2. Lyn

    Jy laat die fout toe. Ek bied aan om dit te bespreek. Skryf vir my in PM, ons sal praat.

  3. Azriel

    Stem absoluut saam met jou. Uitstekende idee, hou ek vol.



Skryf 'n boodskap